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ABSTRACT
Transit Timing Variation (TTV) provides a powerful tool to probe the dynamical configuration of exoplanetary systems from
historical transit data (Holman & Murray 2005; Agol et al. 2004). TTV analysis has allowed both verification of planetary
parameters (Wang et al. 2017) and the discovery of new planetary bodies (Ballard et al. 2011) from transit observation alone.
As part of this work, additional transit light curves have been collected with the 24" Ritchey-Chrétien telescope at Clanfield
observatory and combined with the ExoClock database (Kokori et al. 2021, 2022), Exoplanet transit database (Poddaný et al.
2010), and TESS light curves (Ricker 2014) to create a set of historical TTV data for analysis. A set of extensible TTV models
have been developed to analytically approximate the chaotic n-body nature of real planetary systems. A computational pipeline
to automate model fitting using various parameter optimisation (Storn & Price 1995; Xiang et al. 1997) and model comparison
(Akaike 1992, 1974; Hurvich & Tsai 1993; Schwarz 1978) techniques has been developed in-situ, allowing verification of model
validity and analysis of TTV candidates using a combination of simulation and historical TTV data. The models developed were
found to accurately describe TTV, and could determine the initial system parameters of simulated TTV systems to reasonable
accuracy. Future work will allow extensions to these models, providing a more powerful suite of analytical tools for exoplanetary
science, and the application of these methods to real exoplanetary systems with the possibility of new planetary discoveries.
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2 Jack Lloyd-Walters FRAS

Figure 1. How the location of an exoplanet corresponds to the observed light
curve. Stellar limb darkening was ignored for simplicity.

1 INTRODUCTION

In the last quarter-century, exoplanet detections have seen astronomi-
cal success, in no small part due to the launch of several space bourne
telescopes. Of the 5000 planets found within 3800 planetary systems,
around three quarters have been discovered through transit photom-
etry (Akeson et al. 2013). To this day, over 130 million light curves
have been observed, providing a large base for historical analysis.

Of particular interest for this project is a specific subset of transit
photometry that makes heavy use of this historical data. “Transit Tim-
ing Variation”, or “TTV”, reanalyses historical transit observations
for deviation from 2-body Keplerian motion to provide an insight
into the dynamics of an exoplanetary system.

1.1 Transit photometry

In the case that an exoplanetary system is oriented ‘edge on‘ from
our vantage point on earth, then planets within the system will pe-
riodically occlude the central star. By observing the occlusion, it is
possible to determine many of the physical and orbital parameters of
an exoplanet.

Δ𝐿 =
𝜃𝑝𝑙𝑎𝑛𝑒𝑡

𝜃𝑠𝑡𝑎𝑟
=

𝑅2
𝑝𝑙𝑎𝑛𝑒𝑡

𝑅2
𝑠𝑡𝑎𝑟

≈
𝑟2
𝑝𝑙𝑎𝑛𝑒𝑡

𝑟2
𝑠𝑡𝑎𝑟

(1)

The reduction in stellar light observed during each transit, “Oc-
clusion depth”, is proportional to the angular areas of both the planet
and star. An expression for this is given in equation 1, where 𝜃 is the
angular area, and 𝑅 the angular radius of each object. In the small
angle approximation, the ratio of 𝑅 becomes equal to the ratio of 𝑟 ,
the true radii of each object.

Under the approximation that an exoplanetary transit is small com-
pared to the size of its orbit, the velocity of the exoplanet, 𝑣𝑝𝑙𝑎𝑛𝑒𝑡 ,

will remain constant. By approximating the transit as a line segment,
the time duration of this transit will be proportional to the combined
diameters of the body and star, as demonstrated by figure 1, and
expressed in equation 2.

𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 =
2
(
𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

)
𝑣𝑝𝑙𝑎𝑛𝑒𝑡

(2)

By instead considering the transit as a circular arc (and assuming
the orbital eccentricity is low), the expression for transit duration is
given in equation 3, where 𝑎 is the semi-major axis of the orbit.

𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 =
2𝑎

𝑣𝑝𝑙𝑎𝑛𝑒𝑡
arcsin

𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

𝑎
(3)

Introducing the effect of orbital inclination further complicates this
approximation, as the exoplanet will not transit across the equator
of the stellar disc, as demonstrated in figure 2. This introduces the
quantity known as the “Impact parameter”, and is given in equation 4,
where 𝑖 is the orbital inclination and Ω the longitude of the ascending
node.

𝑏 = 𝑎 cos 𝑖 sinΩ (4)

𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 =
2𝑎

𝑣𝑝𝑙𝑎𝑛𝑒𝑡
arcsin

√︃(
𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

)2 − 𝑏2

𝑎
(5)

Introducing the impact parameter, 𝑏, to equation 3 gives the ex-
pression given in equation 5. This allows information about both the
inclination and radius of the orbit to be deduced from a single transit.
A full derivation of equations 2, 3, and 5 is given in section C1.

1.2 Transit timing

TTV, by definition, is any departure from the predicted transit timing
for an exoplanet as given by its linear ephemerides. While this can
be due to a multitude of reasons, of primary interest for this paper
are those transit timing variations caused by additional planets in the
system (Holman & Murray 2005; Agol et al. 2004).

In the case where a system contains only a central star and orbiting
planet, the equations of motion for the system are given by the closed-
form Keplerian equations. Introducing an additional body to the
system, however, causes the equations of motion to become chaotic,
with no closed-form solution possible. This departure from Keplerian
motion due to an additional gravitating body results in any transiting
planets exhibiting TTV, whose parameters are related in some way
to the orbital and physical properties of the perturbing body.

In the case where gravitational interactions between orbiting bod-
ies are small compared to the gravity of the central star, the motion
of each body can be described as some small perturbation atop the
closed-form Keplerian equations. Measuring TTV allows the dynam-
ical configuration of the system to be probed, as these are entirely
caused by gravitational perturbation. This was demonstrated for the
TRAPPIST-1 system, where the masses and orbital configurations of
the planets were deduced from transit timing variations (Wang et al.
2017), and for the Kepler-19 system, where an additional planet was
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Figure 2. How the orbital inclination affects the length of a transit. The axis
scale is in stellar radii, and it can be seen in this configuration that a transit
would only be visible if the relative inclination were in the region of ±1
degree.

Early transit Expected transit Late transit

Figure 3. Transit timing variations due to interior planetary motion shifting
the barycentre. From left to right are the early-time, expected time, and late-
time transits. Note how, as the graphics are co-rotating with the transiting
planet-barycentre reference frame, it is the apparent motion of the star that
causes TTV.

discovered through TTV analysis (Ballard et al. 2011), to name but
two examples.

Of particular interest for this project are the three following causes
for transit timing variations: Barycentre motion; Orbital perturbation;
and mean motion libration. While other causes are evident, these are
a useful starting ground for intuition.

1.2.1 Barycentre motion

As all bodies in an exoplanetary system orbit about the common
barycentre, rather than the centre of the parent star, the position of

Early transit Expected transit Late transit

Figure 4. Transit timing variations due to exterior planet(s) perturbing the
orbit of the transiting planet. The solid line is the unperturbed orbit, the dashed
is the instantaneous perturbed orbit, and the arrow marks the instantaneous
perturbing force vector. From left to right are the early-time, expected time,
and late-time transits.

the star will appear to shift over time. This motion underpins both
Doppler spectroscopic and astrometric methods for exoplanetary de-
tection, and also results in variations in transit times.

As a transit occurs when the star and planet are aligned, the motion
of the star relative to the barycentre will affect the timing of a transit.
As the star moves, the planet must also move along its orbit for
a transit to occur. The difference in position of the exoplanet as
compared to if the star had not moved causes transits to occur earlier
or later than predicted. This variation is a function of the position
of the barycentre, as shown in figure 3, and is especially sensitive to
massive planets that orbit interior to the transiting planet.

1.2.2 Orbital perturbation

As discussed, the equations of motion have no closed-form solution
for systems with three or more bodies, but can be expressible as a set
of perturbed 2-body solutions, as seen in figure 4.

As perturbing planets orbit about the system, their gravitational
interactions pull the transiting planet further ahead or behind its
unperturbed position. This primarily affects the semi-major axis of
the transiting planet, and thus it’s period, causing the transit to appear
earlier or later as the planet is in a lower or higher orbit than predicted
from simple Keplerian motion. This motion is especially sensitive
to massive perturbing planets exterior to the transiting planet on
elliptical orbits.

1.2.3 mean motion libration

In the case where perturbing planets are in or near mean motion reso-
nance with the transiting planet, the effects of orbital perturbation will
be greatly exaggerated. As the planets are in mean motion resonance,
where their orbital periods are expressed as some small integer ratio,
they will only experience conjunctions at discrete locations along
their orbits. This causes orbital perturbations to accumulate, rather
than average out over many orbits.

As the planets orbit about the system, perturbation causes their
respective periods to drift, as seen in figure 4. This in turn causes
the conjunction positions to drift along the orbit, causing the pertur-
bations to act opposite once the conjunction locations have rotated
180◦ relative to the initial position. This causes cyclic changes in
orbital elements with larger magnitudes over longer timescales than
any of the previously mentioned causes. These changes are especially
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sensitive to perturbing planets of much lower mass than seen in other
TTV causes, particularly planets in first order resonance with the
transiting planet, such as is seen in the kepler-19 system (Ballard
et al. 2011).

1.3 Project objectives

As the detection and analysis of transit timing variations rely on his-
torical data, additional observations have been made throughout this
project with the 24" Ritchey-Chrétien telescope at Clanfield observa-
tory. These observations were analysed with Holomon Photometric
Software (HOPS) (Tsiaras 2021), and uploaded to the ExoClock
database, where other transit observations are combined and verified
(Kokori et al. 2021, 2022).

Transit data from both ExoClock and the exoplanet transit database
(ETD) (Poddaný et al. 2010) have been combined with light curves
from the TESS spacecraft (Ricker 2014). These light curves have
been analysed with the Juliet python package to obtain mid-transit
times (Espinoza et al. 2019). A set of linear ephemerides were fit
with linear regression to the observed transit data and compared
with those published in both the ExoClock database and the NASA
Exoplanet Archive (Akeson et al. 2013). Computing predicted transit
times from these linear ephemerides have allowed a set of TTV to be
computed for each planetary target.

A set of analytical TTV Models have been developed to fit to this
TTV data, providing a method for determining the configuration of
each exoplanetary system from transit observation. These models
have had parameters determined through various minimisation tech-
niques using the SciPy package (Virtanen et al. 2020), such as least
squares regression (Branch et al. 1999), bounded limited memory
Broyden–Fletcher–Goldfarb–Shanno (Byrd et al. 1995; Zhu et al.
1997), differential evolution (Storn & Price 1995), and dual anneal-
ing (Xiang et al. 1997). The parameter distribution was determined
with Markov Chain Monte Carlo (MCMC) analysis using the emcee
package (Foreman-Mackey et al. 2013). This was used to provide
uncertainty bounds on reported values by taking the 16th, 50th, and
84th quantiles of the MCMC samples.

2 METHODOLOGY

2.1 TTV Models

As a first step in transit timing variation analysis, a model, or set of
models, is required against which data can be fitted. As these models
will be used for any given simulation or real-world system setup, they
must have the following properties:

• Computationally inexpensive, models will need to be executed
thousands of times for parameter fitting and should be vectorisable
to take advantage of optimisation.

• Extensible, TTV models should be formulated with standard
equations of motion, such that they can be further re-written to take
advantage of more complex processes.

• System independent, many TTV models in the literature (Agol
et al. 2004; Agol & Deck 2016; Agol & Fabrycky 2018) are presented
in only the three body case. These models should be provided in a
form that allows arbitrarily many planets to be accounted for.

   Transiting planet

Interior Perturbation

   Transiting planet

Exterior Perturbation

   Transiting planet

Boundary Perturbation

Figure 5. Three classes of TTV cause, from left to right, are interior pertur-
bation, exterior perturbation, and combined (or boundary) perturbation. The
classes each represent a subtly different way of describing TTV, and the form
of each model reflects the different approximations and approaches made.

Strictly speaking, there are three categories into which TTV mod-
els can be subdivided. Those are a transiting planet exterior to per-
turbing planets, a transiting planet interior to perturbing planets, and
a transiting planet both interior and exterior to perturbing planets.
These three model classes, demonstrated visually in figure 5, rep-
resent an increasing level of complexity for derivation. Of those,
only the interior and exterior perturbations require derivation, as the
boundary model is formed from a combination of the two.

2.1.1 Interior perturbation

In the case where a transiting exoplanet orbits exterior to the per-
turbing planets, the transit timing variations seen will be dominated
by the motion of the barycentre, as mentioned in section 1.2.1. This
setup is the most intuitive to understand, and makes a useful starting
point.

2.1.1.1 Initial derivation The distance between the barycentre and
primary body is given in equation 6, where 𝑟 is the distance between
the primary and secondary, 𝑚0 and 𝑚1 are the masses of the pri-
mary and secondary respectively, and 𝜇 is the reduced mass of the
secondary.

𝑟𝑏 = 𝑟
𝑚1

𝑚1 + 𝑚0
= 𝑟𝜇1 (6)

If we take the assumption that gravitational influences are dom-
inated by that of the central star, any effects between planets will
be negligible. Thus, the position of the global barycentre can be de-
scribed as a linear combination of each planet in the system, as given
in equation 7.

𝑟𝑏 =

𝑛∑︁
𝑖

𝑟𝑖𝜇𝑖 (7)

The position of an exoplanet along its orbit is given in equation 8,
where 𝑃𝑖 is the orbital period of the planet, 𝑡0,𝑖 is the initial transit
time of the planet, and 𝜙 is the angle between the planet, and the
closest point of its orbit as seen from earth.

𝜙 =
2𝜋

(
𝑡 − 𝑡0,𝑖

)
𝑃𝑖

(8)

This expression of the angle of exoplanet position is equivalent to
the mean anomaly of the planet, and can be combined with equation
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7 to obtain an expression for the position of the barycentre of the
system at any given time, 𝑡, as given in equation 9. The introduction
of the sine term is due to the nature of TTV. Only the motion of the
barycentre perpendicular to the vantage point of the earth is relevant.

𝑟𝑏 =

𝑛∑︁
𝑖

[
𝑟𝑖𝜇𝑖 sin

2𝜋
(
𝑡 − 𝑡0,𝑖

)
𝑃𝑖

]
(9)

As this is the distance of the barycentre from the star, we can negate
the expression to obtain the distance of the star from the barycentre.
This also defines the additional distance the transiting planet must
cover for the transit to occur.

𝛿𝑥 = −
𝑛∑︁
𝑖

[
𝑟𝑖𝜇𝑖 sin

2𝜋
(
𝑡 − 𝑡0,𝑖

)
𝑃𝑖

]
(10)

If we assume the distance associated with a transit is small com-
pared to the size of the orbit of the transiting planet, the velocity of
all bodies in the system will remain constant during the transit. Thus,
to convert the distance, 𝛿𝑥 , to a transit timing variation, we can apply
standard equations of motion, as given in equation 11. As the stellar
mass will be many orders of magnitude larger than the planet, it’s
velocity contribution to the TTV will be negligible.

𝑡 =
𝛿𝑥

𝑣𝑝𝑙𝑎𝑛𝑒𝑡 − 𝑣𝑠𝑡𝑎𝑟
≈ 𝛿𝑥

𝑣𝑝𝑙𝑎𝑛𝑒𝑡
(11)

𝑣𝑝𝑙𝑎𝑛𝑒𝑡 =

√︄
𝐺

(
𝑚𝑠𝑡𝑎𝑟 + 𝑚𝑝𝑙𝑎𝑛𝑒𝑡

)
𝑎𝑝𝑙𝑎𝑛𝑒𝑡

=
2𝜋𝑎

𝑃𝑝𝑙𝑎𝑛𝑒𝑡
(12)

If we assume the orbit of the transiting planet to be circular, the
orbital velocity is that given in equation 12. This can be combined
with equation 11 and equation 10 to provide an expression for the
transit timing variation in this case, as given in equation 13.

𝛿𝑇 = − 𝑃𝑇

2𝜋𝑎𝑇

𝑛∑︁
𝑖

[
𝑎𝑖𝜇𝑖 sin

2𝜋
(
𝑡 − 𝑡0,𝑖

)
𝑃𝑖

]
(13)

2.1.1.2 Extension to eccentric orbits While many of the approx-
imations and assumptions made in the derivation of equation 13 are
valid for real planetary systems, the exclusion of orbital eccentricity
will cause measurable deviation.

As the orbits are no longer circular, we cannot use 𝑎 and 𝑟 in-
terchangeably, instead, we must use the planets’ true anomaly, 𝑓 ,
and eccentricity, 𝑒, as given in equation 14. Additionally, as orbital
velocity varies over an elliptical orbit, we need to use the vis-viva
equation as given in equation 15.

𝑟 =

𝑎

(
1 − 𝑒2

)
1 + 𝑒 cos 𝑓

(14)

𝑣 =

√︄
𝐺

(
𝑚𝑠𝑡𝑎𝑟 + 𝑚𝑝𝑙𝑎𝑛𝑒𝑡

) (
2
𝑟
− 1

𝑎

)
(15)

Introducing equation 14 to equation 13 gives the following expres-
sion for TTV, given in equation 16. As the orbital distance equation

requires introduction of the true anomaly, the term, sin 2𝜋(𝑡−𝑡0,𝑖)
𝑃𝑖

, has
also been replaced with the equivalent but more accurate expression
using true anomaly and argument of periapsis, sin ( 𝑓𝑖 + 𝜔𝑖).

𝛿𝑇 = − 𝑃𝑇

2𝜋𝑎𝑇

𝑛∑︁
𝑖

[
𝑎𝑖𝜇𝑖

1 − 𝑒2
𝑖

1 + 𝑒𝑖 cos 𝑓𝑖
sin ( 𝑓𝑖 + 𝜔𝑖)

]
(16)

Combining the vis-viva equation with the equation for orbital
period, 𝑃 = 2𝜋

√︃
𝑎3/𝐺

(
𝑚𝑠𝑡𝑎𝑟 + 𝑚𝑝𝑙𝑎𝑛𝑒𝑡

)
, gives equation 17, where

the gravitational constant, 𝐺, is abstracted away.

𝑣 =
2𝜋𝑎
𝑃

√︄(
2𝑎 − 𝑟

𝑟

)
(17)

Introducing equation 14 to equation 17 gives equation 18, an ex-
pression for orbital velocity that does not require knowledge of dis-
tance from the star.

𝑣 =
2𝜋𝑎
𝑃

√︄
1 + 2𝑒 cos 𝑓 + 𝑒2

1 − 𝑒2 (18)

This can be further combined with equation 16, replacing our
circular orbital velocity with the new eccentric orbital velocity, to
give equation 19, which is our model for TTV extended to include
orbital eccentricity.

𝛿𝑇 = − 𝑃𝑇

2𝜋𝑎𝑇

(
1 − 𝑒2

𝑇

1 + 2𝑒𝑇 cos 𝑓𝑇 + 𝑒2
𝑇

) 1
2

·
𝑛∑︁
𝑖

[
𝑎𝑖𝜇𝑖

1 − 𝑒2
𝑖

1 + 𝑒𝑖 cos 𝑓𝑖
sin ( 𝑓𝑖 + 𝜔𝑖)

] (19)

2.1.2 Exterior perturbation

To derive the effects of orbital perturbation, we follow a derivation
for a two-planet case (Agol & Fabrycky 2018), and extend this to
𝑛 planets. We assume the transiting planet to have zero eccentricity
and all planets are on coplanar orbits. We give the equation of motion
for a body acting under gravity in equation 20.

¥𝑅𝑅𝑅 =
∑︁
𝑗≠𝑖

[
𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅𝑖

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅𝑖 |3

]
(20)

Where the bold indicates that the position of the planet, 𝑅𝑅𝑅, is a
vector. This can trivially be shown to satisfy 21

∑︁
𝑖

𝑚𝑖
¥𝑅¥𝑅¥𝑅𝑖 = 0 (21)

Which is a demonstration that the centre of mass of the system,
𝑅𝑅𝑅𝐶.𝑜.𝑀 is fixed, and no external forces are at play. This set of
equations are most commonly used in numerical approaches; for an
analytical approach to perturbation, it is more convenient to deal
with the Jacobi coordinates of the system (Malhotra 1993; Murray
& Dermott 1999).

This gives a set of new coordinates, 𝑟𝑖 , describing the position
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of the 𝑖𝑡ℎ body relative to the mass interior to its orbit, as given in
equation 22.

𝑟𝑟𝑟0 = 𝑅𝑅𝑅𝐶.𝑜.𝑀 = 0

𝑟𝑟𝑟1 = 𝑅𝑅𝑅1 − 𝑚0𝑅𝑅𝑅0
𝑚0

= 𝑅𝑅𝑅1 − 𝑅𝑅𝑅0

𝑟𝑟𝑟2 = 𝑅𝑅𝑅2 − 𝑚0𝑅𝑅𝑅0 + 𝑚1𝑅𝑅𝑅1
𝑚0 + 𝑚1.

.

.

𝑟𝑟𝑟𝑛+1 = 𝑅𝑅𝑅𝑛+1 −
∑𝑛

𝑗=0 𝑚 𝑗𝑅𝑅𝑅 𝑗∑𝑛
𝑗=0 𝑚 𝑗

(22)

We can reformulate the equations of motion in Jacobi coordinates,
given in equation 23.

¥𝑟𝑟𝑟𝑛+1 = ¥𝑅𝑅𝑅𝑛+1 −
∑𝑛

𝑗=0 𝑚 𝑗
¥𝑅𝑅𝑅 𝑗∑𝑛

𝑗=0 𝑚 𝑗
(23)

As we are investigating the case of an exterior perturbation, we only
consider the equation for the innermost body, ¥𝑟𝑟𝑟1, given in equation
24.

¥𝑟𝑟𝑟1 = ¥𝑅𝑅𝑅1 − ¥𝑅𝑅𝑅0

¥𝑟𝑟𝑟1 =
∑︁
𝑗≠1

[
𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1 |3

]
−

∑︁
𝑗≠0

[
𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 |3

]
(24)

The double summation terms can be collected, to give equation
25,

¥𝑟𝑟𝑟1 = 𝐺𝑚0
𝑅𝑅𝑅0 − 𝑅𝑅𝑅1
|𝑅𝑅𝑅0 − 𝑅𝑅𝑅1 |3

− 𝐺𝑚1
𝑅𝑅𝑅1 − 𝑅𝑅𝑅0
|𝑅𝑅𝑅1 − 𝑅𝑅𝑅0 |3

+
∑︁
𝑗=2

[
𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1 |3
− 𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 |3

] (25)

For the Jacobian coordinates, We introduce the notation |𝑟𝑟𝑟𝑖 | ≡ 𝑟𝑖 .
That is to say, coordinates in bold is the vector position, while non-
bold is the magnitude of that vector. We also introduce the reduced
mass, 𝜇, given as 𝜇𝑖 = 𝑚𝑖/𝑀, where 𝑀 is the total mass of the system.
As the central star typically dominates the mass of the system, this
can also be written 𝜇𝑖 ≈ 𝑚𝑖/𝑚0.

¥𝑟𝑟𝑟1 = −𝐺𝑚0
𝑟𝑟𝑟1
𝑟3
1
− 𝐺𝑚1

𝑟𝑟𝑟1
𝑟3
1

+
∑︁
𝑗=2

[
𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1 |3
− 𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 |3

] (26)

This can be further simplified to equation 27,

¥𝑟𝑟𝑟1 = −𝐺 (𝑚0 + 𝑚1)
𝑟𝑟𝑟1
𝑟3
1

+
∑︁
𝑗=2

[
𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1 |3
− 𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 |3

] (27)

In the 2-body case, where there is only a single body and star, this
equation is the Keplerian equation of motion, as given in equation
28. As the central star dominates the mass of the system, we can use
𝑚0 + 𝑚𝑖 ≈ 𝑚0 to simplify.

¥𝑟𝑟𝑟𝑖 = −𝐺 (𝑚0 + 𝑚𝑖)
𝑟𝑟𝑟𝑖

𝑟3
𝑖

≈ −𝐺𝑚0
𝑟𝑟𝑟𝑖

𝑟3
𝑖

(28)

From this, we can see that the acceleration in Jacobian coordinates
for an n-body system as given by equation 27 is the standard Keplerian
with some perturbative acceleration applied,

¥𝑟𝑟𝑟𝑖 = −𝐺 (𝑚0 + 𝑚1)
𝑟𝑟𝑟1
𝑟3
1
+ 𝛿¥𝑟𝑟𝑟1 (29)

With the perturbing acceleration given in equation 30,

𝛿¥𝑟𝑟𝑟1 =
∑︁
𝑗=2

[
𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1 |3
− 𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 |3

]
(30)

If we introduce terms to the first fractional part, we have equation
31.

𝛿¥𝑟𝑟𝑟1 =
∑︁
𝑗=2

[
𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1 + 𝑅𝑅𝑅0 − 𝑅𝑅𝑅0

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅1 + 𝑅𝑅𝑅0 − 𝑅𝑅𝑅0 |3
− 𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 |3

]
=

∑︁
𝑗=2

[
𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 − 𝑟𝑟𝑟1

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 − 𝑟𝑟𝑟1 |3
− 𝐺𝑚 𝑗

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0

|𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 |3

] (31)

We can consider the value of 𝑅𝑅𝑅 𝑗 −𝑅𝑅𝑅0 by using the general case in
equation 22, to give the values for 𝑅𝑅𝑅 𝑗 ,

𝑟𝑟𝑟𝑛+1 = 𝑅𝑅𝑅𝑛+1 −
∑𝑛

𝑗=0 𝑚 𝑗𝑅𝑅𝑅 𝑗∑𝑛
𝑗=0 𝑚 𝑗

𝑅𝑅𝑅𝑛+1 = 𝑟𝑟𝑟𝑛+1 +
∑𝑛

𝑗=0 𝑚 𝑗𝑅𝑅𝑅 𝑗∑𝑛
𝑗=0 𝑚 𝑗

(32)

Which can be evaluated to give equation 33. Note the expression
obtained in line 3, the value for 𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 is some combination of
𝑅𝑅𝑅𝑘 − 𝑅𝑅𝑅0 where 0 < 𝑘 < 𝑗 .

𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 = 𝑟𝑟𝑟 𝑗 +
∑ 𝑗−1

𝑘=0 𝑚𝑘𝑅𝑅𝑅𝑘∑ 𝑗−1
𝑘=0 𝑚𝑘

− 𝑅𝑅𝑅0

= 𝑟𝑟𝑟 𝑗 +
∑ 𝑗−1

𝑘=1 𝑚𝑘𝑅𝑅𝑅𝑘∑ 𝑗−1
𝑘=0 𝑚𝑘

= 𝑟𝑟𝑟 𝑗 +
𝑗−1∑︁
𝑘=1

𝜇𝑘 (𝑅𝑅𝑅𝑘 − 𝑅𝑅𝑅0)

(33)

We define a new value 𝑟𝑟𝑟 𝑗0, as a shorthand for 𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0, given in
equation 34,

𝑟𝑟𝑟 𝑗0 ≡ 𝑅𝑅𝑅 𝑗 − 𝑅𝑅𝑅0 = 𝑟𝑟𝑟 𝑗 +
𝑗−1∑︁
𝑘=1

𝜇𝑘 (𝑅𝑅𝑅𝑘 − 𝑅𝑅𝑅0) (34)

By combining equations 31 and 33, we obtain equation 35,

𝛿¥𝑟𝑟𝑟1 =
∑︁
𝑗=2

𝐺𝑚 𝑗

𝑟𝑟𝑟 𝑗0 − 𝑟𝑟𝑟1

|𝑟𝑟𝑟 𝑗0 − 𝑟𝑟𝑟1 |3
− 𝐺𝑚 𝑗

𝑟𝑟𝑟 𝑗0

𝑟3
𝑗 ,0

 (35)
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Which can be simplified slightly as equation 36, which gives the
perturbing acceleration on the transiting planet. Additionally, this
can be expanded in a Legendre series to first order, giving the second
line in equation 36.

𝛿¥𝑟𝑟𝑟1 =
∑︁
𝑗=2

𝐺𝑚 𝑗
©­«−

𝑟𝑟𝑟1 − 𝑟𝑟𝑟 𝑗0

|𝑟𝑟𝑟1 − 𝑟𝑟𝑟 𝑗0 |3
−
𝑟𝑟𝑟 𝑗0

𝑟3
𝑗0

ª®¬


=
∑︁
𝑗=2

[
−
𝐺𝑚 𝑗

𝑟3
𝑗

(
𝑟𝑟𝑟1 − 3

𝑟𝑟𝑟1 · 𝑟𝑟𝑟 𝑗
𝑟2
𝑗

𝑟𝑟𝑟 𝑗

)
+ O

(
𝑟1/𝑟 𝑗

)2] (36)

To find the perturbed period of the transiting planet, we compute
how this acceleration changes when averaged over the orbital period.
The angular position of the transiting planet from the vantage point of
earth, 𝜃1, is given by the sum of its true anomaly, 𝑓1, and argument
of periapsis, 𝜔1. This is gives equation 37. As the eccentricity of
this planet is assumed zero, the true and mean anomaly are equal.
We can also introduce the transit number, 𝑛1, and epoch 𝜏1, to this
expression.

𝜃1 = 𝑓1 + 𝜔1

= 𝑛1 (𝑡 − 𝜏1) 𝜔1
(37)

Differentiating equation 37 with respect to time gives equation 38.

¤𝜃1 = ¤𝑛1 (𝑡 − 𝜏1) + 𝑛1 − 𝑛1 ¤𝑡0,1 (38)

Following (Murray & Dermott 1999, section. 2.9), we express ¤𝑛
as a function of the semimajor axis: ¤𝑛1 = −3𝑛1/2𝑎1 ¤𝑎1,

¤𝜃1 =
3𝑛1 ¤𝑎1
2𝑎1

(𝑡 − 𝜏1) + 𝑛1 − 𝑛1 ¤𝜏

= 𝑛1

(
3 ¤𝑎1
2𝑎1

(𝑡 − 𝜏1) + 1 − ¤𝜏
) (39)

Expressing the time derivatives ¤𝑎1, ¤𝜏, and ¤𝜔 in terms of ¥𝑟1 gives
equation 40,

¤𝜃1 = 𝑛1
©­«1 −

2𝑎2
1

𝐺 (𝑚0 + 𝑚1)
∑︁
𝑗=2

[
1
2
𝐺𝑚 𝑗𝑎1

𝑟3
𝑗

]ª®¬ (40)

This demonstrates why the orbital period of the transiting planet
increases, the addition of planets in the system causes an increase in
the effective mass interior to its orbit by 1

2𝑚 𝑗

(
𝑎1/𝑟 𝑗

)3.
We can finally obtain the timing of the (N+1)th transit, given in

equation 41 (see Agol & Fabrycky 2018, Section 4).

𝑡 − 𝑡0 =

∫ 𝑓0+2𝜋𝑁

𝑓0
𝑑𝑓1 ¤𝜃−1

1

=

∫ 𝑓0+2𝜋𝑁

𝑓0
𝑑𝑓1𝑛

−1
1

1 + 1
𝑚0 + 𝑚1

∑︁
𝑗=2

[
𝑚 𝑗

(
𝑎1
𝑟 𝑗

)3
]

(41)

Following (Borkovits et al. 2003), we can express the true anomaly
of the transiting planet in terms of the true anomalies of the perturbing
planets,

𝑑𝑓1 =
∑︁
𝑗=2


𝑃 𝑗

𝑃1

𝑟2
𝑗

𝑎2
𝑗

(
1 − 𝑒2

𝑗

)1/2
𝑑𝑓 𝑗

 (42)

As 𝑟 depends on 𝑓 , we can introduce equation 8 (also given below
as equation 43) to equation 42, giving equation 44.

𝑟𝑖 =

𝑎𝑖

(
1 − 𝑒2

𝑖

)
1 + 𝑒𝑖 cos 𝑓𝑖

(43)

𝑑𝑓1 =
∑︁
𝑗=2


𝑃 𝑗

𝑃1

1

𝑎2
𝑗

(
1 − 𝑒2

𝑗

)1/2

©­­«
𝑎 𝑗

(
1 − 𝑒2

𝑗

)
1 + 𝑒 𝑗 cos 𝑓 𝑗

ª®®¬
2

𝑑𝑓 𝑗


=

∑︁
𝑗=2


𝑃 𝑗

𝑃1

(
1 − 𝑒2

𝑗

)3/2(
1 + 𝑒 𝑗 cos 𝑓 𝑗

)2 𝑑𝑓 𝑗


(44)

As the original variable of integration in equation 41, 𝑓1, changes
due to the perturbation, we rewrite the integral in terms of the unper-
turbed 𝑓 𝑗 . As an approximation, we consider only the gravitational
forces acting on the transiting planet, and treat the perturbing planets
as following Keplerian orbits. The substitution for 𝑑𝑓1 is given in
equation 44, and gives equation 45.

𝑡 − 𝑡0 =
∑︁
𝑗=2

[∫ 𝑓0+2𝜋𝑁

𝑓0

©­­«𝑑𝑓 𝑗𝑛−1
1

𝑃 𝑗

𝑃1

(
1 − 𝑒2

𝑗

)3/2(
1 + 𝑒 𝑗 cos 𝑓 𝑗

)2
·
(
1 +

𝑚 𝑗

𝑚0 + 𝑚1

(
𝑎1
𝑟 𝑗

)3
))] (45)

Which can be evaluated to give the timing of the (N+1)th transit,
as shown in equation 46.

𝑡 − 𝑡0 = 𝑁𝑃1 +
𝑃2

1
2𝜋 (𝑚0 + 𝑚1)

·
∑︁
𝑗=2


𝑚 𝑗

(
𝑓 𝑗 + 𝑒 𝑗 sin 𝑓 𝑗

) (
1 − 𝑒2

𝑗

)−3/2

𝑃 𝑗


(46)

To find the departure from linear ephemerides, and thus obtain the
TTV, we subtract the mean transit time 𝑁𝑃1 from equation 46. As the
𝑓 𝑗 terms also includes the mean motion, 𝑛

(
𝑡 − 𝜏𝑗

)
, of the perturbing

planets, we subtract that too, giving equation 47. We have now found
a model of TTV caused by the perturbation due to outer planets.

𝛿𝑡1 =
𝑃2

1
2𝜋 (𝑚0 + 𝑚1)

·
∑︁
𝑗=2


𝑚 𝑗

(
𝑓 𝑗 − 𝑛 𝑗

(
𝑡 − 𝜏𝑗

)
+ 𝑒 𝑗 sin 𝑓 𝑗

) (
1 − 𝑒2

𝑗

)−3/2

𝑃 𝑗


(47)

2.2 Parameter search

With a suite of analytical TTV models at our disposal, we need to
determine methods for fitting to simulated or physical TTV signals,
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and determining the marginalization and uncertainty associated with
the fit.

2.2.1 Optimisation

To determine this set of best fit parameters, we leverage the field
of computational optimisation and the large quantity of implementa-
tions that have been written for it through the SciPy package (Virtanen
et al. 2020). There are various metrics and methods for optimisation,
the most notable of which are discussed below.

2.2.1.1 Least squares regression An appealing yet naïve approach
to parameter determination, where the squared sum of the residuals
to a fit is minimised. While this has benefits in the form of being
expressible as linear algebra, and efficient implementation in many
programming packages, it suffers on two accounts:

Least squares is a method of local minimisation, there is no way
of determining if a solution is the global optimum without searching
all possible solutions. Searching through all solutions is described
by the brute-forcing algorithm, the complexity of which grows ex-
ponentially with the number of model parameters. This exponential
growth leads to computationally expensive searches.

This method will also often under- or over-estimate the fitting
parameters, as the residuals to the fit is not necessarily a good metric
from initial parameters. This is most susceptible to random error in
the data, and is less an issue on larger datasets.

2.2.1.2 Maximum likelihood Maximum likelihood estimation, or
MLE, provides a numerical optimisation method for models that
more accurately describe real world data, as opposed to the more
idealised case within which linear regression was originally formu-
lated. The logarithm of the likelihood function for Bayesian analysis
is given in equation 48

ln 𝑝(𝑦 |𝑥, 𝜃, 𝑀) = −1
2

∑︁
𝑛

[
(𝑦𝑛 − 𝑀 (𝑥, 𝜃))2

𝑠2
𝑛

+ ln
(
2𝜋𝑠2

𝑛

)]
(48)

Where 𝑥 and 𝑦 is the set of data, 𝑀 is the model to be fit, 𝜃 the
parameters of the model, and 𝑠 is given by:

𝑠2
𝑛 = 𝜎2

𝑛 + 𝑓 2 [𝑀 (𝑥, 𝜃)]2 (49)

Where the additional 𝜎 is the error on each data point. The loga-
rithm of the likelihood is used due to its concavity, and that a given
log likelihood is the sum of individual log likelihoods, providing an
intuitive base for usage.

2.2.1.3 Minimisation In computational parameter optimisation, it
is standard to try to minimise, rather than maximise, the values of a
function within a given parameter space. As we have highlighted the
usefulness of maximum likelihood estimation, it is useful to quickly
adapt this to the computational workflow. This is very easily achieved
by simply attempting to minimise the negative log likelihood of a
model.

As mentioned in least squares regression, 2.2.1.1, it is preferable
to find, or approximately find, the global optimal parameters, two
methods for which are differential evolution (Storn & Price 1995)

and dual annealing (Xiang et al. 1997). These global optimisation
methods are accessed through the 𝑠𝑐𝑖𝑝𝑦.𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒 python package
(Virtanen et al. 2020).

Differential evolution takes inspiration from evolutionary science,
and attempts to optimise a problem through iterative improvements to
some metaheuristic, such as the log likelihood, of the solution. This is
specifically achieved by initialising some large set of “agents”, each
with random starting parameters, and allowing them to converge to
the global solution.

Dual annealing implements a different metaheuristic to differen-
tial evolution, taking its name from the controlled cooling of material
(annealing) used in metallurgy. The method begins by considering
the neighbouring parameters 𝑠∗ to its current solution 𝑠, and proba-
bilistically deciding to move between those states. This probabilistic
method is dependent upon the “Temperature” of each state, which
is defined as some function of the likelihood of each state. The free
energy of the system defines how much each parameter may vary,
and is slowly reduced, eliminating solutions with lower likelihoods.
This continues until the free energy is zero, and the system has found
the optimum with maximum likelihood.

As a typical final step in global optimisation, we polish the
found parameters with some local optimisation method. The spe-
cific tool used in this project is the bounded limited memory Broy-
den–Fletcher–Goldfarb–Shanno algorithm (Byrd et al. 1995; Zhu
et al. 1997), accessed through the 𝑠𝑐𝑖𝑝𝑦.𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒.𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 method
call. This method, like many other quasi-newton algorithms, itera-
tively converges to an optimal solution through gradient descent This
is specifically achieved using the hessian matrix of the function, the
square matrix of second-order partial derivatives with respect to the
free parameters of the function.

2.2.2 Model comparison

In the case where models have an equivalent set of parameters, sim-
ply comparing the value of the maximum likelihood is sufficient to
draw conclusions about their accuracy. If the number of parameters
between models is inconsistent, this approach will naturally result in
overfitting.

This is especially relevant for our transit models. For example, the
initial TTV model seen in equation 13 has two fixed parameters and
an additional four free parameters per body in the system, while the
extension to this, as seen in equation 19 has four fixed parameters
and an additional five free parameters per body in the system. As the
number of bodies in the system is an additional free parameter, some
method of comparison is required.

2.2.2.1 Akaike information criterion To determine the quality for
each model, some weighting dependent on their free parameters is
introduced to the likelihood value (Akaike 1992, 1974).

AIC = 2𝑘 − 2 ln 𝐿 (50)

In the case where a model has 𝑘 free parameters, with a maximum
likelihood 𝐿, the AIC value is as given in equation 50. This provides
a middle ground between goodness of fit, and model simplicity,
handling both under- and over-fitting simultaneously.
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2.2.2.2 Corrected Akaike information criterion Where the sam-
ple size is small, the standard AIC method can lead to overfitting,
and a correction is required to better describe the fit (Hurvich &
Tsai 1993). This extension to AIC attempts to fix the overfitting by
introducing a further penalty from the number of data points, 𝑛, as
seen in equation 51.

AICc = 𝐴𝐼𝐶 + 2𝑘2 + 2𝑘
𝑛 − 𝑘 − 1

=
2𝑘𝑛

𝑛 − 𝑘 − 1
− 2 ln 𝐿 (51)

The exact form of the expression for the corrected Akaike informa-
tion criterion (AICc) is not fixed, but is determined for the individual
models to be scored. The equation given in 51 is the one used in this
project, and is not representative of some general AICc expression.
The commonality between all AICc expressions is the dependence
on 𝑘2, as all AICc are second-order estimates.

2.2.2.3 Bayesian information criterion Another model selection
metric closely related to the corrected Akaike information criterion,
BIC introduces a larger penalty for free parameters by weighting
them with the number of observed data points (Schwarz 1978).

BIC = 𝑘 ln 𝑛 − 2 ln 𝐿 (52)

In the case where a model has 𝑘 free parameters, 𝑛 data points, and
a maximum likelihood 𝐿, the BIC value is as given in equation 52.
Models that have lower BIC values are generally preferred, though
this does not always yield the optimal fit.

2.2.3 Markov Chain, Monte Carlo

To determine parameter bounds, a Markov Chain Monte Carlo
(MCMC) method is used through the 𝐸𝑚𝑐𝑒𝑒 package (Foreman-
Mackey et al. 2013). This class of algorithms use the probability
distribution of a function to construct a sample chain that converges
to the desired distribution, typically one that is normally distributed
around the true parameters. This begins very similarly to the differ-
ential evolution optimisation technique described in section 2.2.1.3,
where a set of “walkers” are initialised with arbitrary starting param-
eters, and allowed to walk around the parameter space according to
some ensemble method.

The ensemble method used for this project is the stretch move
(Goodman & Weare 2010), a method that significantly outperforms
the more traditional Metropolis-Hastings algorithm (Hastings 1970).
The position of a walker, 𝑋𝑘 , is determined by randomly selecting
another walker, 𝑋 𝑗 , and proposing a new position by interpolating
between the two with some variable randomly drawn from the dis-
tribution, as given in equation 53, (see Foreman-Mackey et al. 2013,
eq. 7).

𝑋𝑘 (𝑡) −→ 𝑌 = 𝑋 𝑗 + 𝑍
[
𝑋𝑘 (𝑡) − 𝑋 𝑗

]
(53)

3 RESULTS / DISCUSSION

3.1 Observations

Six transit observations were planned at the beginning of this project
to observe four different exoplanetary systems: HAT-P-13b, HAT-

Figure 6. De-trended transit light curve for an observation of HAT-P-13b
taken 2022-02-24 and analysed with HOPS (Tsiaras 2021). Note the anomaly
near the mid-transit time due to light cloud cover. Reported 𝑅𝑝/𝑅∗ is 0.0844±
0.0013 (Bakos et al. 2009).

Figure 7. De-trended transit light curve for an observation of HAT-P-13b
taken 2022-02-27 and analysed with HOPS (Tsiaras 2021). Note the large
residuals and missing data in the second half of the transit, caused by clouds
completely obscuring the star for several hours.

P-44b, and K2-19b. Of those, only two observations were made,
both of HAT-P-13b, and are given in figures 6 and 7. Significant
cloud cover prevented further observations, and severely hampered
the observation made on 2022-02-27 (figure 7).

The light-curves have been fit with HOPS (Tsiaras 2021), and
have provided values for 𝑅𝑝/𝑅∗ close to the reported literature (Bakos
et al. 2009) when considering the large variance in flux caused by
suboptimal weather conditions.

The observation on 2022-02-27, given in figure 7, shows large
residuals and has had data points after the mid-transit time removed.
This was due to large cloud cover that reduced sky visibility to 0% for
several hours during the middle of the transit. Re-introducing these
data points to the HOPS fitting, the result in figure 8 is obtained.
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Figure 8. De-trended transit light curve for the observation of HAT-P-13b
taken 2022-02-27 without the central data points removed. Note how the
relative change in flux due to the cloud-cover is larger than the predicted
occlusion depth.
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Figure 9. Combined light curve (top) and TTV data (bottom) for HATS-46,
as observed by the TESS spacecraft. Only HATS-46b transits the star, and a
large disparity is noted in the middle of the dataset due to observations over
multiple TESS sectors.

The relative change in flux due to the cloud cover is larger than the
occlusion depth of the transit by a significant factor, causing hops to
fit transit egress to this position.

3.2 Light curve analysis

With TESS light curves collected from the Mikulski archive for space
telescopes, additional mid-transit times could be computed to com-
plement those collected from the exoplanet transit database and Ex-
oClock database, as was briefly touched upon in section 1.3.

3.2.1 De-trending

Many of the TESS light curves show strong long-term trends that
can make transit detection difficult. To de-trend the data, a Gaussian
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Figure 10. Combined light curve (top) and TTV data (bottom) for Wasp-8, as
observed by the TESS spacecraft. Note the large transit depths as compared to
HATS-46, and the correspondingly small uncertainties in the TTV residuals
that result from that.

Juliet-Literature comparison

Source (Brahm et al. 2018) Juliet posteriors

𝑎/𝑅∗ 13.55 +0.45
−0.65 14.699 +1.541

−1.830

𝑏 0.63 +0.042
−0.034 0.480 +0.266

−0.171

𝑖 87.32 +0.22
−0.31 88.126 +1.119

−1.014

𝑅𝑝/𝑅∗ 0.1088 ± 0.0027 0.10369 +0.00496
−0.00444

𝑃 4.7423729 ± 0.0000049 4.7423836070 +0.0000139110
−0.0000114410

Table 1. Comparison between literature parameters and Juliet parameters
from TESS for HATS-46b. Many of the values satisfy the ‘Good enough’
criterion despite not having the complementary radial velocity measurements
used in the detection paper to refine the parameters.

process is fit to the out-of transit data, using the linear ephemerides
for the planetary system to deduce the locations of transits. This
was performed using an approximate Matern kernel using the Juliet
wrapper (Espinoza et al. 2019) to the Celerite package (Foreman-
Mackey et al. 2017). This gives the black line seen in figures 9, and
10, which very closely matches the overall light curve trend.

3.2.2 Transit fitting

Transit fits were then performed on the de-trended data, using the
Juliet wrapper to both the Batman (Kreidberg 2015) and Dynesty
(Speagle 2020) packages. The parameters for the transit models are
initialised by randomly selecting from the priors, and iteratively
walked through parameter space. The general parameters for the
exoplanet are returned to the posteriors of the fit, which adequately
match the confirmed literature despite having few transits and no
initial parameters to work from.

Taking the posteriors found for HATS-46b, as compared to the
detection paper (Brahm et al. 2018), we have the results as given in
table 1
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Figure 11. system layout as generated by the simulation pipeline for
TRAPPIST-1.

3.2.3 TTV Residuals

By subtracting the found transit times from computed ephemerides,
TTV residuals are computed for each transit. The transit uncertainty
is read directly from the Juliet posteriors, and can be seen in the
bottom half of figures 9, and 10.

The uncertainty in the residuals are proportional to the depth of
the transit divided by the variance in the data, as seen in the two
provided figures. From this, we would expect the magnitude and
standard deviation of TTV to be approximately the same order of
magnitude. Of particular note in that regard are the Wasp-8 TTV
residuals: all of them lie more than one sigma from the centre of the
O-C diagram.

3.3 Simulation pipeline

3.3.1 Initialisation

The simulation pipeline makes use of the REBOUND (Rein & Liu
2012) and REBOUNDx (Tamayo et al. 2020) packages for numerical
integration. The pipeline has been created to accept either a given
planetary system, as seen in figure 11, or a .𝑐𝑠𝑣 file holding orbital
elements.

The system is set up from provided parameters, and iterated for-
ward using IAS15 (Rein & Spiegel 2015). Transits are evaluated
where the position of the star, 𝑅∗, and position of the target, 𝑅𝑇 ,
satisfy the following,

𝑅̂∗.𝑦 < 𝑅̂𝑇 .𝑦 (54)

𝑅̂∗.𝑥 ≈ 𝑅̂𝑇 .𝑥 (55)
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Figure 12. TTV Residuals for TRAPPIST-1b according to simulation. Note
the complex sinusoidal motion and large magnitudes due to the highly-
resonant nature of the system. Additionally, note the thickness of the TTV
curve, caused by low period variations due to non-resonant interactions.

3.3.2 Simulated TTV

The transit time is found by iteratively decreasing simulation step
time, and integrating until the desired precision is met, which is 1
millisecond by default. This provides a set of simulated transit times
which are fit to TTV using least squares regression as mentioned in
section 2.2.1.1. In the case of TRAPPIST-1b, the simulation output
is as seen in figure 12.

The simulation pipeline integrates the effect of General Relativity,
but could be further extended to include effects such as tidal defor-
mation, stellar evolution, to even those as subtle as the Yarkovsky
effect.

3.4 Analytical Models

Following the derivations in section 2.1, analytical models were
converted to vectorisable code to be executed by the com-
putation pipeline. The translation from equation to code is
mostly intuitive, and can be seen in this project’s GitHub repo,
https://github.com/SK1Y101/TransitProject.

3.4.1 System and TTV

To demonstrate the capabilities of the model, we selected exoplane-
tary systems with known TTV signals and generated synthetic sys-
tems whose properties were representative of the real systems, to
allow precise control of TTV magnitude during testing phases. An
example system layout is given in figure 13.

Running the TTV simulation over a timescale of 200 years gives
the residuals seen in figure 14. A 200-year integration is not repre-
sentative of any known transiting planet, the earliest transiting data
dates to 1999 (Charbonneau et al. 2000), and was simply chosen to
better demonstrate the long-term evolution of the transit timing vari-
ation. The variance of data returned by the simulation is the standard
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Figure 13. The system layout for one of the synthetic test systems. The
exoplanets in this example were initialised in low-eccentricity non-resonant
orbits, with masses of 0.8, 0.5, and 5 Jupiter mass from inner to outer.
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Figure 14. Simulated TTV residuals for the synthetic system used in model
testing. The TTV simulated are for the outermost planet in the system, as seen
in figure 13.

deviation of measured TTV. For real systems, however, this variance
is computed from the uncertainties of known parameters.

The initial parameters used in this synthetic system are given in
table 2.

3.4.2 Model comparison

To determine the validity of the analytical models, they were executed
with the initial parameters used to set up the system. As the transiting

Initialisation parameters

Body 𝑚 𝑝 (Days) 𝑒 𝜔 (Radians)

Star 1.32𝑀⊙
Perturber 1 0.8𝑀𝐽 9 0.15 0
Perturber 2 0.5𝑀𝐽 65 0.15 1
Target 5𝑀𝐽 537 0.30 𝜋/2

Table 2. Initial parameters for the synthetic system: mass, orbital period,
eccentricity, and argument of periapsis. Other parameters not given here are
initialised to zero, or (in the case of 𝑎, computed in-situ).
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Figure 15. Analytical TTV curves for the synthetic system, using the initial
parameters. Model1, Model2, and Model3 are the models described in equa-
tions 13, 16, and 19 respectively. Each graph shows a 5 transit snippet from
the TTV curve. Simulated TTV times are overlaid in black.

planet is the outermost in the system, the first class of TTV models
2.1.1 is used to analytically approximate the system. The models as
derived in this paper are given in equations 13, 16, and 19, which are
re-summarised below,

𝛿𝑇 = − 𝑃𝑇

2𝜋𝑎𝑇

𝑛∑︁
𝑖

[
𝑎𝑖𝜇𝑖 sin

2𝜋
(
𝑡 − 𝑡0,𝑖

)
𝑃𝑖

]
(56)

𝛿𝑇 = − 𝑃𝑇

2𝜋𝑎𝑇

𝑛∑︁
𝑖

[
𝑎𝑖𝜇𝑖

1 − 𝑒2
𝑖

1 + 𝑒𝑖 cos 𝑓𝑖
sin ( 𝑓𝑖 + 𝜔𝑖)

]
(57)

𝛿𝑇 = − 𝑃𝑇

2𝜋𝑎𝑇

(
1 − 𝑒2

𝑇

1 + 2𝑒𝑇 cos 𝑓𝑇 + 𝑒2
𝑇

) 1
2

·
𝑛∑︁
𝑖

[
𝑎𝑖𝜇𝑖

1 − 𝑒2
𝑖

1 + 𝑒𝑖 cos 𝑓𝑖
sin ( 𝑓𝑖 + 𝜔𝑖)

] (58)

The TTV curves generated by these models are shown in figure 15.
Despite the various approximations used in the derivation for each
model, and the subsequent applicability space for which they are
valid, they match the simulated TTV to within the 1-sigma bounds.

Additionally, note how the overall shape of the analytical curves
change as a result of first introducing perturbed eccentricity, and then
transiting planet eccentricity. Strictly speaking, the sections of the
analytical curves between each transit do not correspond to anything
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One perturbing planet

Model Method 𝜇 (10−6) 𝑎 (10−6 AU) 𝑒 𝜔

Model 1 diff. evo. 348.996 380017.037 0.245 6.083
Model 1 dual an. 612.062 216632.299 0.033 5.589
Model 2 diff. evo. 504.325 185229.581 0.344 2.018
Model 2 dual an. 321.476 419718.646 0.116 -0.019
Model 3 diff. evo. 428.884 225677.205 0.043 -4.821
Model 3 dual an. 625.847 158625.666 0.114 -3.129

Table 3. Best fit parameters for the synthetic system TTV with only a single
perturbing planet.

Two perturbing planets

Model Method 𝜇 (10−6) 𝑎 (10−6 AU) 𝑒 𝜔

Model 1 diff. evo. 75.484 1242571.08 0.239 -0.864
41.269 135176.665 0.195 -1.165

Model 1 dual an. 206.855 226389.639 0.463 -6.241
227.427 585132.122 0.483 -2.24

Model 2 diff. evo. 398.235 118829.517 0.019 -0.285
146.886 833966.926 0.135 1.518

Model 2 dual an. 268.507 500367.032 0.101 -2.655
138.984 335523.36 0.142 1.404

Model 3 diff. evo. 427.237 225677.039 0.0 6.283
0.001 58070.523 0.085 4.119

Model 3 dual an. 35.051 995449.059 0.113 3.73
102.098 966847.114 0.082 2.8

Table 4. Best fit parameters for the synthetic system TTV with two perturbing
planets.

physically within the system. They describe the predicted TTV, were
the transiting planet to have a slightly offset time of periapsis passage.

3.4.3 Parameter optimisation

As we have now demonstrated the accuracy of the models, to some
set of initial parameters, the next stage is in the reverse: finding some
parameters for which the model fits the data set.

To do this, the three models were each initialised with the fixed
parameters, those being the properties of the host star and transiting
planet, and three sets of arbitrary initial parameters corresponding to
a system with one, two, and three planets additional to the transiting
target, giving an effective set of 9 models to optimise. Each of these
were optimised with both dual annealing (Xiang et al. 1997) and
differential evolution (Storn & Price 1995), for which the best fit of
the two methods was selected as that model’s maximum likelihood
solution.

The optimal TTV curves found for each model are given in figure
16, where the table of the optimal solution values for each model is
given in tables 3, 4, and 5.

3.4.4 Model selection

How a model is selected as most likely is two-fold. To begin with,
we sample the solutions for each model to determine marginalisation
and uncertainties. The parameter space is sampled using MCMC
(Foreman-Mackey et al. 2013), and a normal parameter distribution
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Figure 16. Fit TTV curves from the set of 18 models after being optimised
with the synthetic system.
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Three perturbing planets

Model Method 𝜇 (10−6) 𝑎 (10−6 AU) 𝑒 𝜔

Model 1 diff. evo. 589.909 241886.321 0.386 -2.961
7.508 263814.017 0.449 -5.18
53.287 236535.741 0.009 0.337

Model 1 dual an. 19.684 1411636.58 0.205 3.55
196.18 240995.442 0.354 0.185
428.518 310462.859 0.059 -6.026

Model 2 diff. evo. 145.253 833960.172 0.262 2.613
0.001 134746.642 0.288 -3.71

103.699 109160.755 0.142 -1.761
Model 2 dual an. 286.502 167374.87 0.14 2.521

625.306 212912.077 0.001 -4.735
471.528 67248.984 0.434 0.301

Model 3 diff. evo. 5.06 216218.273 0.311 1.451
18.73 240838.21 0.309 4.963

616.988 100349.363 0.021 -4.403
Model 3 dual an. 78.76 1242718.32 0.012 2.37

123.85 281959.982 0.192 -4.953
602.58 95865.617 0.5 1.574

Table 5. Best fit parameters for the synthetic system TTV with three perturb-
ing planets.

Information criterion

Model Method 𝑘 𝐴𝐼𝐶 𝐴𝐼𝐶𝑐 𝐵𝐼𝐶

Model 1 diff. evo. 4 1430.588159 1430.961991 1441.462154
Model 1 dual an. 4 1430.953796 1431.327627 1441.827791
Model 1 diff. evo. 7 1642.175578 1643.252501 1661.20507
Model 1 dual an. 7 1606.839154 1607.916077 1625.868646
Model 1 diff. evo. 10 1460.812691 1462.990909 1487.99768
Model 1 dual an. 10 1512.057709 1514.235926 1539.242697
Model 2 diff. evo. 5 1465.179736 1465.745774 1478.772231
Model 2 dual an. 5 1464.585283 1465.151321 1478.177777
Model 2 diff. evo. 9 1452.463533 1454.228239 1476.930023
Model 2 dual an. 9 1454.402606 1456.167312 1478.869096
Model 2 diff. evo. 13 1472.298081 1476.012367 1507.638567
Model 2 dual an. 13 1727.322675 1731.03696 1762.66316
Model 3 diff. evo. 5 1477.916183 1478.48222 1491.508677
Model 3 dual an. 5 1454.979605 1455.545643 1468.5721
Model 3 diff. evo. 9 1620.473796 1622.238502 1644.940286
Model 3 dual an. 9 1564.258843 1566.023549 1588.725333
Model 3 diff. evo. 13 1592.098363 1595.812649 1627.438849
Model 3 dual an. 13 1697.010862 1700.725148 1732.351348

Table 6. Free parameter count, maximum log likelihood, and information
criterion scores for each of the 18 models. The number of data-points used
was 112, corresponding to a simulation time of around 200 years.

constructed from the sampler. This is then converted to a set of quan-
tiles, specifically 16%, 50%, and 84%, representing the reportable
parameters and one sigma variance. The entire normal distribution is
reported in a corner plot using the corner package (Foreman-Mackey
2016).

With the set of best fit parameters and error bounds for each model,
the accuracy of their fit is determined by scoring with the three infor-
mation criterion discussed earlier: AIC (Akaike 1992, 1974), AICc
(Hurvich & Tsai 1993), and BIC (Schwarz 1978). The information
criterion values for each model for this data is given in table 6

Initial-‘best fit’ parameters

Source Initial best-fit second-contender

perturbers 2 1 2
𝜇 (10−6) 763.834 347.104 +42.043

−36.969 307.455 +266.399
−179.331

477.396 142.286 +66.645
−39.806

𝑎 (10−6) 902905.881 380015.561 +22.941
−21.390 118936.225 +6823.023

−65818.750

347103.538 833957.621 +144.770
−192.663

𝑝 Days 65.002 74.471 +0.007
−0.006 13.040 +1.002

−9.002

8.999 242.119 +0.058
−0.081

𝑒 0.15 0.245 +0.159
−0.170 0.019 +0.000

−0.220

0.15 0.135 +0.080
−0.002

𝜔 1 1.082 +5.132
−4.661 −0.285 +0.826

−0.0368

0 1.518 +0.593
−0.013

Table 7. Comparison of the found parameters, with uncertainties, and the
initial parameters used for system setup. The periods are computed from the
semimajor axes, and each planet is given its own row. Model 1 with a single
perturber produced the best fit parameter, while Model 2 with two perturbers
produced the second-contender
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Figure 17. Sample corner plot for the best-fit model output. Along the diag-
onal is the normal distribution for each parameter, with the remainder filled
out with two-dimensional slices of the parameter space. The 16th, 50th, and
84th quantiles are marked with the dashed lines.

3.4.5 Most likely system

We can determine the most likely model by selecting that with the
lowest AIC, AICc, and BIC from the information criterion table 6.
The parameters for the best fit model are given in table 7, with the
initial system parameters also listed. Additionally, the corner plot for
the best-fit model is given in figure 17, and the system layout is given
in figure 18. As a comparison, the second-bet fit model parameters
are also listed in figure 7, with the system layout given in 19.
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Figure 18. System layout for the best-fit model parameters for the synthetic
system. Note how the found planet roughly correlates to the second transiting
planet in the system.

3.5 Discussion

3.5.1 Evaluation

We have successfully demonstrated the accuracy of analytical transit
timing variation models as compared to TTV signals, seen in figure
15, as well as the potential for this methodology to be applied to de-
termining the parameters of TTV systems, seen in figure 18. We have
also demonstrated the capabilities of our computational pipeline, and
the possibilities for further work that could be implemented using it.

Therefore, although it has not yet been demonstrated for a known
exoplanetary system, the method and computational pipeline outlined
in this paper should be capable of producing similar results when
using real transit timing variation data. Further study in this field
would allow this to be proven, and further refinements should reduce
the computational time required to perform each analysis.

3.5.2 Limitations

One of the primary goals was the observation of exoplanetary transits,
with six observation windows planned at the beginning of the project.
One of those observations was severely hampered by cloud cover, and
four others had to be cancelled.

While part of this project focused on finding the globally optimal
solution, this does not necessarily always exist. Due to the highly
chaotic nature of gravitational interactions, multiple systems layouts
can provide identical or near identical TTV signals. This is best
demonstrated in the detection paper for kepler-19c, (see Ballard et al.
2011, fig. 14), where a single TTV signal had no fewer than eight
possible configurations for the orbit of an extra planet.

This demonstrates a possible drawback of this method, and would
require additional constraints based on complementary observations
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Figure 19. System layout for the second-best-fit model parameters for the
synthetic system. Note how both of the found planets have slightly larger
orbits than the initial system layout in figure 13, due to the lower 𝜇 found by
the optimiser, as seen in table 7.

for any tentative detections made using transit timing variations to
be considered.

The best-fit for the synthetic system, given in table 7, gave only
a single perturbing planet as the maximum likelihood, as opposed
to the two that were used to initialise the simulation. This is due to
the outer perturbing planet dominating the TTV signal, as seen in
figure 14, due to its larger semi-major axis. This demonstrates the
second drawback of this methodology, and ties into the statement
about non-unique TTV solutions: the additional effect on TTV due
to more than one perturber can become negligible.

This could be circumvented by fitting for a TTV cause to find the
most dominant planetary effect, and then subtracting that from the
known TTV signal. This would leave only the effects of other planets
in the system, which could be fed back into the fitting pipeline to
determine the parameters of the second perturber, and so on. This
would, however, require a longer integration time for the computa-
tional pipeline.

As an additional point, we see the second-best fit given in table
7 does pick out the second planetary signal. The higher Akaike
information criterion for this model is almost singularly decided by
the model having 9 free parameters, as opposed to 4. Further research
may benefit from re-evaluating the information criterion used. A
disparity in our implementation may come from the assumptions
made when determining the number of free parameters for each
model: The original AIC assumed each free parameter contributed an
additional polynomial power, while our paper assumed each orbital
element contributed an additional free parameter.
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One perturbing planet with broken pipeline

Model Method 𝜇 (10−6) 𝑎 (10−6 AU) 𝑒 𝜔

Model 1 diff. evo. 1.035 96.079 0.328 5.544
Model 1 dual an. 6.705 492.195 0.247 4.653
Model 2 diff. evo. 1.87 16.48 0.05 -1.199
Model 2 dual an. 0.0 1000000.0 0.0 -6.283
Model 3 diff. evo. 7.159 25.489 0.721 0.331
Model 3 dual an. 230.674 32.877 0.95 -1.076

Table 8. Best fit parameters for the synthetic system TTV with only a single
perturbing planet, generated with a version of the fitting pipeline that was not
working correctly.

Two perturbing planets with broken pipeline

Model Method 𝜇 (10−6) 𝑎 (10−6 AU) 𝑒 𝜔

Model 1 diff. evo. 4.25 6.047 0.689 -0.429
5.191 13.68 0.682 3.073

Model 1 dual an. 10000.0 1000000.0 0.089 3.107
0.0 1000000.0 0.168 3.556

Model 2 diff. evo. 8.378 5.079 0.334 -4.329
3.081 3.842 0.315 3.798

Model 2 dual an. 142.003 1470.238 0.904 -6.245
135.908 363.211 0.446 -2.719

Model 3 diff. evo. 1.242 91.763 0.345 3.337
69.118 1.51 0.774 -0.539

Model 3 dual an. 9566.976 1749.583 0.946 -6.156
44.774 39782.621 0.021 -1.303

Table 9. Best fit parameters for the synthetic system TTV with two perturbing
planets, generated with a version of the fitting pipeline that was not working
correctly.

3.5.3 Errors

A sample output was generated while writing this paper to show
some problems associated with the TTV fitting pipeline during its
development. For this broken state, Figure 20 shows the best-fit TTV
curves generated by model 1, and tables 8, 9, and 10, show the output
parameters found.

We can see that some magnitudes predicted are on the order of
109 seconds, and some did not generate a TTV at all. This is clearly
incorrect, and there are a few reasons as to why.

First, while the distances and times in the initial data should have
been in astronomical units and years when loaded, the simulation
pipeline used metres and days. A smaller issue was seen in the
parameter optimisation output, where many values for 𝜇 are zero and
many values for 𝑒 are close to 1. To align the planets with values seen
in real exoplanets, we modified the eccentricity selection to prefer
lower values and defined a lower bound on 𝜇 at 10−9. As a reference,
the lowest planet to star mass ratio of any discovered planet is PSR
B1257+12 b at 4.092 ∗ 10−9.

Additionally, many of the ‘best fit‘ solutions gave planets whose
orbits are near identical. This solution, while technically satisfying
the minimisation criterion, does not aptly describe physical plane-
tary systems, and so an additional factor must be introduced when
determining maximum likelihood.

Three perturbing planets with broken pipeline

Model Method 𝜇 (10−6) 𝑎 (10−6 AU) 𝑒 𝜔

Model 1 diff. evo. 14.363 5.521 0.713 3.778
26.087 1.68 0.07 -0.992
54.047 1.908 0.472 0.803

Model 1 dual an. 373.562 1019.304 0.09 4.129
460.821 3787.52 0.63 -0.409
429.981 4730.766 0.856 5.576

Model 2 diff. evo. 0.031 651.633 0.438 1.067
3.066 8.581 0.609 1.124

667.252 0.164 0.076 -1.809
Model 2 dual an. 10876.298 19380.767 0.948 0.079

2263.278 116193.389 0.91 -0.201
52.942 199344.612 0.38 -3.02

Model 3 diff. evo. 0.933 5.807 0.346 1.041
13.972 0.649 0.606 5.087

0.0 25.101 0.786 -0.541
Model 3 dual an. 1963.766 49260.785 0.95 -3.42

2002.719 33767.03 0.948 -0.245
1268.371 5562.579 0.935 -3.162

Table 10. Best fit parameters for the synthetic system TTV with three per-
turbing planets, generated with a version of the fitting pipeline that was not
working correctly.
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Figure 20. Fitted TTV Curves for the six fitting sets for model 1, generated
with a version of the fitting pipeline that was not working correctly, where
the number of perturbing bodies and the fitting method are given. Simulated
TTV times are overlaid in black.

𝑟𝐻,𝑚𝑖𝑛 = 𝑎 (1 − 𝑒) 3

√︂
𝑚

3𝑀

𝑟𝐻,𝑚𝑎𝑥 = 𝑎 (1 + 𝑒) 3

√︂
𝑚

3𝑀

(59)

The Hill sphere of a celestial body is the region over which it
dominates the attraction of satellites, as compared to its orbital parent.
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The radii of the hill sphere are given in equation 59, where 𝑀 is the
mass of the primary body, and 𝑚, 𝑎, and 𝑒 are the mass, semi-major
axis, and eccentricity of the secondary body respectively. As the
extent of the hill sphere is dependent upon the distance between the
body and it’s parent, we require two expressions for the maximum
and minimum radii. We can use this to define the boundaries of a
region of instability that other planets in the system cannot cross,
given in equation 60, (see Jones et al. 2006, eq. 7), where 𝑛 is some
additional term that increases the effective size of the hill sphere,
as orbital perturbations in the immediate vicinity can cause bodies
initially outside the boundary region to intersect with it. While this
is not a strict requirement for long-term stability, as the orbits of
Pluto and Neptune show, we will not consider those exoplanets with
intersecting orbits.

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖𝑛𝑛𝑒𝑟 = 𝑎 (1 − 𝑒)
[
1 − 𝑛 3

√︂
𝑚

3𝑀

]
𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑜𝑢𝑡𝑒𝑟 = 𝑎 (1 + 𝑒)

[
1 + 𝑛 3

√︂
𝑚

3𝑀

] (60)

4 CONCLUSION

The aim of this project was to increase historical transit data by ob-
serving exoplanet transits, to develop a set of analytical TTV models
to approximate transit timing variation, and to create a computational
pipeline for TTV analysis that should be capable of determining
the best fit parameters for those models. On all three accounts, this
project has been successful, with observations logged to the Exo-
Clock database to be included in their updated ephemerides paper
later this year, the models as derived in the methodology section of
this paper, and a well documented codebase available in this project’s
GitHub repository. As mentioned in sections 3.1 and 3.5.2, only 2
transits could be observed, less than originally intended.

We have demonstrated that the analytical models are a valid de-
scriptor for TTV signals, provided they are used within the bounds of
their approximation, and that the computational pipeline is adequate
for fitting those models to data. As the main programming objectives
have been met, further development with the computational pipeline
would focus on code optimisation and refactoring.

Although real TTV data was used to test the computational pipeline
and models, no analysis was performed on them due to time con-
straints, especially the length of time required to fit light curves to
TESS data when using the Gaussian process. Further research would
build on this project and perform analysis of real planetary systems,
as we have demonstrated the methodology to be sound.
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(Kreidberg 2015); Gaussian processes were performed using Celerite
(Foreman-Mackey et al. 2017); MCMC sampling was performed
using Dynesty (Speagle 2020). Additionally, sample limb-darkening
coefficients used the method outlined by Kipping et al. (Kipping
2013), and uninformative samples for radii and impact parameters
used those outlined by Espinoza et al. (Espinoza 2018).

This research has made use of the NASA Exoplanet Archive,
which is operated by the California Institute of Technology, under
contract with the National Aeronautics and Space Administration
under the Exoplanet Exploration Program. This paper also includes
data collected with the TESS mission, obtained from the MAST data
archive at the Space Telescope Science Institute (STScI). Funding
for the TESS mission is provided by the NASA Explorer Program.
STScI is operated by the Association of Universities for Research in
Astronomy, Inc., under NASA contract NAS 5–26555.

DATA AVAILABILITY

The datasets were derived from sources in the public domain:

- ExoClock – https://www.exoclock.space/, (Kokori et al. 2021,
2022)

- Exoplanet Archive – https://exoplanetarchive.ipac.caltech.edu/
(Akeson et al. 2013).

- Exoplanet Transit Database – https://var2.astro.cz/ETD/ (Pod-
daný et al. 2010)

- TESS MAST – https://archive.stsci.edu/missions-and-data/tess
(Ricker 2014)

Data for this paper were sourced from the NASA Exoplanet
Archive and TESS MAST using the astroquery package (Ginsburg
et al. 2019).

Additionally, the data and software underlying this project are
available in GitHub at https://github.com/SK1Y101/TransitProject.

Determining The Parameters of Exoplanetary Candidates From Transit Timing Variations, Jack Lloyd-Walters FRAS, 2022



18 Jack Lloyd-Walters FRAS

REFERENCES

Agol E., Deck K., 2016, Transit Timing to First Order in Eccentricity, ApJ,
818, 177

Agol E., Fabrycky D. C., 2018, Transit-Timing and Duration Variations for the
Discovery and Characterization of Exoplanets, in Deeg H. J., Belmonte
J. A., eds, , Handbook of Exoplanets. Springer International Publishing
AG, part of Springer Nature, p. 7, doi:10.1007/978-3-319-55333-7_7

Agol E., Steffen J., Sari R., Clarkson W., 2004, On detecting terrestrial planets
with timing of giant planet transits, arXiv e-prints, pp astro–ph/0412032

Akaike H., 1974, A new look at the statistical model identification, IEEE
Transactions on Automatic Control, 19, 716

Akaike H., 1992, Information Theory and an Extension of the Maxi-
mum Likelihood Principle. Springer New York, New York, NY, pp
610–624, doi:10.1007/978-1-4612-0919-5_38, https://doi.org/10.
1007/978-1-4612-0919-5_38

Akeson R. L., et al., 2013, The NASA Exoplanet Archive: Data and Tools for
Exoplanet Research, PASP, 125, 989

Bakos G. Á., et al., 2009, HAT-P-13b,c: A Transiting Hot Jupiter with a
Massive Outer Companion on an Eccentric Orbit, ApJ, 707, 446

Ballard S., et al., 2011, The Kepler-19 System: A Transiting 2.2 R ⊕ Planet
and a Second Planet Detected via Transit Timing Variations, ApJ, 743,
200

Borkovits T., Érdi B., Forgács-Dajka E., Kovács T., 2003, On the detectability
of long period perturbations in close hierarchical triple stellar systems,
A&A, 398, 1091

Brahm R., et al., 2018, HATS-43b, HATS-44b, HATS-45b, and HATS-46b:
Four Short-period Transiting Giant Planets in the Neptune-Jupiter Mass
Range, AJ, 155, 112

Branch M., Coleman T., li Y., 1999, A Subspace, Interior, and Conjugate Gra-
dient Method for Large-Scale Bound-Constrained Minimization Prob-
lems, SIAM Journal on Scientific Computing, 21

Byrd R. H., Lu P., Nocedal J., Zhu C., 1995, A Limited Memory Algo-
rithm for Bound Constrained Optimization, SIAM Journal on Scientific
Computing, 16, 1190

Charbonneau D., Brown T. M., Latham D. W., Mayor M., 2000, Detection of
Planetary Transits Across a Sun-like Star, ApJ, 529, L45

Espinoza N., 2018, Efficient Joint Sampling of Impact Parameters and Transit
Depths in Transiting Exoplanet Light Curves, Research Notes of the
American Astronomical Society, 2, 209

Espinoza N., Kossakowski D., Brahm R., 2019, juliet: a versatile modelling
tool for transiting and non-transiting exoplanetary systems, MNRAS,
490, 2262

Foreman-Mackey D., 2016, corner.py: Scatterplot matrices in Python, The
Journal of Open Source Software, 1, 24

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, emcee: The
MCMC Hammer, PASP, 125, 306

Foreman-Mackey D., Agol E., Angus R., Ambikasaran S., 2017, Fast and
scalable Gaussian process modeling with applications to astronomical
time series, AJ, 154, 220

Ginsburg A., et al., 2019, astroquery: An Astronomical Web-querying Pack-
age in Python, AJ, 157, 98

Goodman J., Weare J., 2010, Ensemble samplers with affine invariance, Com-
munications in Applied Mathematics and Computational Science, 5, 65

Hastings W. K., 1970, Monte Carlo sampling methods using Markov chains
and their applications, Biometrika, 57, 97

Holman M. J., Murray N. W., 2005, The Use of Transit Timing to Detect
Terrestrial-Mass Extrasolar Planets, Science, 307, 1288

Hurvich C. M., Tsai C.-L., 1993, A CORRECTED AKAIKE INFORMA-
TION CRITERION FOR VECTOR AUTOREGRESSIVE MODEL SE-
LECTION, Journal of Time Series Analysis, 14, 271

Jones B. W., Sleep P. N., Underwood D. R., 2006, "Habitability of Known
Exoplanetary Systems Based on Measured Stellar Properties", ApJ, 649,
1010

Kipping D. M., 2013, Efficient, uninformative sampling of limb darkening
coefficients for two-parameter laws, MNRAS, 435, 2152

Kokori A., et al., 2021, ExoClock project: an open platform for monitoring
the ephemerides of Ariel targets with contributions from the public,

Experimental Astronomy,
Kokori A., et al., 2022, ExoClock Project. II. A Large-scale Integrated Study

with 180 Updated Exoplanet Ephemerides, ApJS, 258, 40
Kreidberg L., 2015, batman: BAsic Transit Model cAlculatioN in Python,

Publications of the Astronomical Society of the Pacific, 127, 1161
Malhotra R., 1993, Three-Body Effects in the PSR 1257+12 Planetary System,

ApJ, 407, 266
Murray C. D., Dermott S. F., 1999, Solar system dynamics
Poddaný S., Brát L., Pejcha O., 2010, "Exoplanet Transit Database. Reduction

and processing of the photometric data of exoplanet transits", New As-
tron., 15, 297

Rein H., Liu S. F., 2012, REBOUND: an open-source multi-purpose N-body
code for collisional dynamics, A&A, 537, A128

Rein H., Spiegel D. S., 2015, IAS15: a fast, adaptive, high-order integrator
for gravitational dynamics, accurate to machine precision over a billion
orbits, MNRAS, 446, 1424

Ricker G. R., 2014, "The Transiting Exoplanet Survey Satellite Mission",
Joint American Association of Variable Star Observers, 42, 234

Schwarz G., 1978, Estimating the Dimension of a Model, The Annals of
Statistics, 6, 461

Speagle J. S., 2020, DYNESTY: a dynamic nested sampling package for
estimating Bayesian posteriors and evidences, MNRAS, 493, 3132

Storn R., Price K., 1995, Differential Evolution: A Simple and Efficient Adap-
tive Scheme for Global Optimization Over Continuous Spaces, Journal
of Global Optimization, 23

Tamayo D., Rein H., Shi P., Hernandez D. M., 2020, REBOUNDx: a library
for adding conservative and dissipative forces to otherwise symplectic
N-body integrations, MNRAS, 491, 2885

Tsiaras A., 2021, HOPS: a user-friendly data analysis software to open
exoplanet reasearch, in European Planetary Science Congress. pp
EPSC2021–602, doi:10.5194/espc2021-602

Virtanen P., et al., 2020, SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python, Nature Methods, 17, 261

Wang S., Wu D.-H., Barclay T., Laughlin G. P., 2017, Updated Masses for
the TRAPPIST-1 Planets, arXiv e-prints, p. arXiv:1704.04290

Xiang Y., Sun D., Fan W., Gong X., 1997, Generalized simulated annealing
algorithm and its application to the Thomson model, Physics Letters A,
233, 216

Zhu C., Byrd R. H., Lu P., Nocedal J., 1997, Algorithm 778: L-BFGS-B:
Fortran Subroutines for Large-Scale Bound-Constrained Optimization,
ACM Trans. Math. Softw., 23, 550–560

APPENDIX A: LIST OF FIGURES

1 Exoplanet location to observed light curve
2 Exoplanet inclination to transit length
3 TTV due to interior perturbation
4 TTV due to exterior perturbation
5 Three classes of TTV
6 De-trended transit curve for HAT-P-13b, observed
2022-02-24
7 De-trended transit curve for HAT-P-13b, observed
2022-02-27
8 De-trended transit curve for HAT-P-13b, observed
2022-02-27, without removed data points
9 Combined light curve and TTV data for HATS-46
10 Combined light curve and TTV data for Wasp-8
11 TRAPPIST-1 System Layout
12 TRAPPIST-1b simulated TTV
13 System layout for one of the synthetic systems
14 TTV Residuals for the synthetic system
15 Analytical TTV given synthetic system initial pa-
rameters

Determining The Parameters of Exoplanetary Candidates From Transit Timing Variations, Jack Lloyd-Walters FRAS, 2022

http://dx.doi.org/10.3847/0004-637X/818/2/177
https://ui.adsabs.harvard.edu/abs/2016ApJ...818..177A
http://dx.doi.org/10.1007/978-3-319-55333-7_7
https://ui.adsabs.harvard.edu/abs/2004astro.ph.12032A
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1007/978-1-4612-0919-5_38
https://doi.org/10.1007/978-1-4612-0919-5_38
https://doi.org/10.1007/978-1-4612-0919-5_38
http://dx.doi.org/10.1086/672273
https://ui.adsabs.harvard.edu/abs/2013PASP..125..989A
http://dx.doi.org/10.1088/0004-637X/707/1/446
https://ui.adsabs.harvard.edu/abs/2009ApJ...707..446B
http://dx.doi.org/10.1088/0004-637X/743/2/200
https://ui.adsabs.harvard.edu/abs/2011ApJ...743..200B
https://ui.adsabs.harvard.edu/abs/2011ApJ...743..200B
http://dx.doi.org/10.1051/0004-6361:20021688
https://ui.adsabs.harvard.edu/abs/2003A&A...398.1091B
http://dx.doi.org/10.3847/1538-3881/aaa898
https://ui.adsabs.harvard.edu/abs/2018AJ....155..112B
http://dx.doi.org/10.1137/S1064827595289108
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1086/312457
https://ui.adsabs.harvard.edu/abs/2000ApJ...529L..45C
http://dx.doi.org/10.3847/2515-5172/aaef38
http://dx.doi.org/10.3847/2515-5172/aaef38
https://ui.adsabs.harvard.edu/abs/2018RNAAS...2..209E
http://dx.doi.org/10.1093/mnras/stz2688
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.2262E
http://dx.doi.org/10.21105/joss.00024
http://dx.doi.org/10.21105/joss.00024
http://dx.doi.org/10.1086/670067
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F
http://dx.doi.org/10.3847/1538-3881/aa9332
http://dx.doi.org/10.3847/1538-3881/aafc33
http://adsabs.harvard.edu/abs/2019AJ....157...98G
http://dx.doi.org/10.2140/camcos.2010.5.65
http://dx.doi.org/10.2140/camcos.2010.5.65
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1126/science.1107822
https://ui.adsabs.harvard.edu/abs/2005Sci...307.1288H
http://dx.doi.org/https://doi.org/10.1111/j.1467-9892.1993.tb00144.x
http://dx.doi.org/10.1086/506557
https://ui.adsabs.harvard.edu/abs/2006ApJ...649.1010J
https://ui.adsabs.harvard.edu/abs/2006ApJ...649.1010J
http://dx.doi.org/10.1093/mnras/stt1435
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.2152K
http://dx.doi.org/10.1007/s10686-020-09696-3
http://dx.doi.org/10.3847/1538-4365/ac3a10
https://ui.adsabs.harvard.edu/abs/2022ApJS..258...40K
http://dx.doi.org/10.1086/683602
https://ui.adsabs.harvard.edu/#abs/2015PASP..127.1161K
http://dx.doi.org/10.1086/172511
https://ui.adsabs.harvard.edu/abs/1993ApJ...407..266M
http://dx.doi.org/10.1016/j.newast.2009.09.001
http://dx.doi.org/10.1016/j.newast.2009.09.001
https://ui.adsabs.harvard.edu/abs/2010NewA...15..297P
http://dx.doi.org/10.1051/0004-6361/201118085
https://ui.adsabs.harvard.edu/abs/2012A&A...537A.128R
http://dx.doi.org/10.1093/mnras/stu2164
https://ui.adsabs.harvard.edu/abs/2015MNRAS.446.1424R
https://ui.adsabs.harvard.edu/abs/2014JAVSO..42..234R
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1093/mnras/staa278
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S
http://dx.doi.org/10.1093/mnras/stz2870
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.2885T
http://dx.doi.org/10.5194/espc2021-602
http://dx.doi.org/10.1038/s41592-019-0686-2
https://rdcu.be/b08Wh
https://ui.adsabs.harvard.edu/abs/2017arXiv170404290W
http://dx.doi.org/https://doi.org/10.1016/S0375-9601(97)00474-X
http://dx.doi.org/10.1145/279232.279236


Determining The Parameters of Exoplanetary Candidates From Transit Timing Variations 19

16 Best fit curves for the 18 models with the synthetic
data set
17 Corner-plot for best-fit model output
18 Best fit system layout
19 Second Best fit system layout
20 Fitted curves for the six fitting sets for model 1 for
the synthetic system, generated with broken fitting pipeline.

APPENDIX B: LIST OF TABLES

1 Comparison between literature and computed transit
data for HATS-46b
2 Synthetic system parameters
3 Best fit parameters for the synthetic system TTV with
only a single perturbing planet.
4 Best fit parameters for the synthetic system TTV with
two perturbing planets.
5 Best fit parameters for models for the synthetic system
6 Information criterion for fitting models for the syn-
thetic system
7 Comparison between best fit and initial parameters
for the synthetic system
8 Best fit parameters for the synthetic system TTV with
only a single perturbing planet, generated with a version
of the fitting pipeline that was not working correctly.
9 Best fit parameters for the synthetic system TTV
with two perturbing planets, generated with a version of
the fitting pipeline that was not working correctly.
10 Best fit parameters for the synthetic system TTV with
three perturbing planets, generated with a version of the
fitting pipeline that was not working correctly.

APPENDIX C: EXTRA MATERIAL

C1 Transit duration derivation

As demonstrated in figure 1, a transit begins the moment the planetary
disk overlaps the stellar disk, reaches maximum occlusion when the
centres of the star and planet are aligned, and ends once the planetary
disk no longer overlaps the stellar disk. The centre-to-centre distance
between the exoplanet and star at transit ingress and egress is thus
the sum of their angular radii,

𝑠𝑖𝑛𝑔𝑟𝑒𝑠𝑠 = 𝑠𝑒𝑔𝑟𝑒𝑠𝑠 = 𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡 (C1)

As a transit occurs between ingress and egress, the total angular
distance the exoplanet must cover is simply twice this,

𝑠𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = 2𝑅𝑠𝑡𝑎𝑟 + 2𝑅𝑝𝑙𝑎𝑛𝑒𝑡 (C2)

If we assume the exoplanets orbit is large compared to the distance
travelled during a transit, this linear distance will approximately
equal the distance travelled by the exoplanet during the transit. If we
additionally assume the orbit of the exoplanet is circular, then the
tangential velocity will remain constant,

𝑣 = const. =
√︂

𝜇

𝑎
=

√︄
𝐺 (𝑚𝑠𝑡𝑎𝑟 + 𝑚𝑝𝑙𝑎𝑛𝑒𝑡 )

𝑎
(C3)

The total duration of the transit in this case is given from the
standard equations of motion,

𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 =
𝑠

𝑣
=

2𝑅𝑠𝑡𝑎𝑟 + 2𝑅𝑝𝑙𝑎𝑛𝑒𝑡

𝑣𝑝𝑙𝑎𝑛𝑒𝑡
(C4)

Which is the expression for transit duration given in equation 2.
As a useful stepping stone, we instead consider the transit distance

as that of a circle arc. The radius of this circle is the semi-major axis,
𝑎, and the angle swept by the transit, 𝛽, in radians. Thus, the transit
time is given,

𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 =
𝑎𝛽

𝑣
(C5)

The swept angle, 𝛽, is also the angle swept by an isosceles triangle
of base 2𝑅𝑠𝑡𝑎𝑟 +2𝑅𝑝𝑙𝑎𝑛𝑒𝑡 and sides 𝑎, as demonstrated by observing
the transit from above. The angle, 𝛽, can therefore be given by the
law of cosines,

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝛾 (C6)

Which, if written using our orbital parameters, becomes

(
2𝑅𝑠𝑡𝑎𝑟 + 2𝑅𝑝𝑙𝑎𝑛𝑒𝑡

)2
= 2𝑎2 (1 − cos 𝛽) (C7)

Rearranging gives,

1 − cos 𝛽 =

(
2𝑅𝑠𝑡𝑎𝑟 + 2𝑅𝑝𝑙𝑎𝑛𝑒𝑡

)2
2𝑎2 (C8)

This can be reformulated from trigonometric identity, 1 − cos 𝑥 =

2 sin2 𝑥/2,

2 sin2 𝛽

2
=

(
2𝑅𝑠𝑡𝑎𝑟 + 2𝑅𝑝𝑙𝑎𝑛𝑒𝑡

)2
2𝑎2 (C9)

Which simplifies as,

sin
𝛽

2
=

𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

2𝑎
(C10)

obtaining the expression for 𝛽,

𝛽 = 2 arcsin
𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

𝑎
(C11)

Which gives the transit duration,

𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 =
2𝑎
𝑣

arcsin
𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

𝑎
(C12)

This of course exactly matches the expression given in equation
3. As any given exoplanet may not transit exactly aligned with the
equator of the stellar disk due to its relative inclination, the distance
covered during a transit must also account for this.

There are two orbital elements that describe the orientation of a
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circular orbit, the inclination, 𝑖, and longitude of the ascending node,
Ω. As we do not have a defined “zero angle” for an arbitrary exoplanet,
these will be described as their relative inclination, defined as zero
when the planet transits the stellar equator, and relative longitude of
the ascending node, defined as zero when perpendicular to our line
of sight.

The offset from the stellar equator from our point of view is thus,

𝑏 = 𝑎 cos 𝑖 sinΩ (C13)

The transverse distance of the transit is then described by a right-
angled triangle of hypotenuse 𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡 and height 𝑏, which
can be recovered from Pythagorean theorem,

𝑠2
𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 + 𝑏2 =

(
𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

)2 (C14)

which gives the transverse distance as,

𝑠𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 =
𝑠𝑡𝑟𝑎𝑛𝑠𝑖𝑡

2
=

√︃(
𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

)2 − 𝑏2 (C15)

following the same derivation between equations C7 and C11 gives
the modified swept angle of the transit as,

𝛽𝑏 = 2 arcsin

√︃(
𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

)2 − 𝑏2

𝑎
(C16)

Which gives a transit duration of,

𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 =
2𝑎
𝑣

arcsin

√︃(
𝑅𝑠𝑡𝑎𝑟 + 𝑅𝑝𝑙𝑎𝑛𝑒𝑡

)2 − 𝑏2

𝑎
(C17)

which is of course our expression given in equation 5.
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